Protocell Mesh

By Philip Beesley

Includes essays by international leaders in contemporary architectural prototyping and design and documents the exhibition Prototyping Architecture, which was inaugurated at Wolfson Hall, University of Nottingham, 2012, and then shown at the London Building Centre Gallery, 2013, where it was accompanied by the international conference Prototyping Architecture. The final stage of the exhibition is at Design at Riverside, University of Waterloo, 2013 for the ACADIA 2013 Adaptive Architecture international conference, Cambridge, Ontario.

Includes bibliographical references and index.

Issued in print and electronic formats.


NA2728.P76 2013 729.074 C2013-906305-6
C2013-906304-8
Prototyping Architecture

Published by Riverside Architectural Press

The Architecture & Tectonics Research Group at the University of Nottingham with The Building Centre Trust, London and Cambridge Galleries and Waterloo Architecture are pleased to present this book, which explores the importance of prototypes in the delivery of high quality contemporary architecture - performative architecture that is inventive, purposeful and beautiful. Maximising the effective use of materials and resources whilst delivering environments that facilitate human well-being. This book accompanies and records the Prototyping Architecture Exhibitions in Nottingham, London and Cambridge, Ontario. This set of exhibitions has evolved venue to venue for site specific reasons.

© Michael Stacey 2013

The rights of Michael Stacey to be identified as the Author and Editor of this Work have been asserted in accordance with the Copyright, design and Patents Act 1988.

Editor + Author: Michael Stacey

Book Design: Laura Gaskell, Jennifer Grewcock, Benjamin Stanforth and Andrew Tindale

Editorial Advice: Andrew King, Laura Gaskell, Jennifer Grewcock and Benjamin Stanforth

Cover Image: The performative skin of the SmartWrap Pavilion, architect KieranTimberlake
Contents

Forward
Spencer de Gray

1.0 Introduction
Michael Stacey

Prototypes

2.1 Protocol Mesh
Philip Beesley

2.2 Tripartite Fabric Formwork Column
Anne-Mette Manelius with MARS

Fabric Formwork: Prototyping Concrete as Material and Process
Anne-Mette Manelius

2.3 GFRP Shell Prototype
Heinz Isler

2.4 GFRP Kinetic Façade of Yeosu Expo Theme Pavilion
soma

Adaptive Formations: Two Pavilions, One Adaptation, One Tower
Kristina Schinagel and Stefan Rutzinger

2.5 Centre for Sustainable Energy Technologies
Mario Cucinella Architects with Brian Ford

2.6 Optical Fibre Concrete
Johannes Rauff Greisen

2.7 Aquatic Centre Formwork
Zaha Hadid Architects and PERI

2.8 Green School Gaza: Architecture as a Sign of Peace
Mario Cucinella Architects

2.9 Reversable Construction with Wooden Panel
Søren Nielsen

2.10 Autarki 1:1 Pavilion
CINARK

A Self Sufficient Pavilion
Emanuele Naboni, Alessandro Maccarini and Jasper Nielsen

2.11 Timber Wave
AL_A with Arup

2.12 TRADA Pavilion Leg Prototype and Model
Ramboll Computational Design

TRADA Pavilion, Design, Research and Development
Stephen Melville, John Harding and Harri Lewis

2.13 One Main
Mark Goulthorpe

2.14 Passive Downdraft Evaporative Cooling
Brian Ford and Ingeniatrics-Frisia

The Nottingham House: Responsive Adaptation and Domestic Ecology
Brian Ford and Michael Stacey

2.15 To-and-Fro Table
NEX

2.16 Times Eureka Pavilion
NEX

2.17 Typology Tests – Digital Grotesque
Michael Hansmeyer and Benjamin Dittricher

2.18 Passion Façade
Antoni Gaudí and Mark Bury

2.19 FabPod
SIAL IR RMIT

2.20 Lobolly House Prototype
KieranTimberlake

2.21 Zoid
Yves Ebberther

2.22 Stressed Out
Sixteen*(makers)

De-Fabricating Protoarchitecture
Bob Shaw

2.23 Bones
Barkow Leibinger

2.24 Thames Water Tower
Michael Stacey

2.25 Quantum Cloud
Anthony Gormley

2.26 Nasher Sculpture Center
Renzo Piano Building Workshop

New Materials and Technologies

3.1 Additive Manufactured Violin
Joel Segal and EOS GmbH

3.2 Additive Manufacturing Aerospace Component
Additive Manufacturing Research Group

3.3 Nematox II: Additive Manufacturing Curtain Walling Node
Holger Strauß

3.4 Energy Bag
Seamus Garvey

3.5 Plumen 001 Low Energy Light Bulbs
Foreword

Spencer de Grey

This book, appropriately digital, has been prepared to accompany the Prototyping Architecture exhibition at the Building Centre, London. On the 10 January 2013, I was delighted to open this exhibition in my role as Chairman of The Building Centre Trust. For me, this is an incredibly important exhibition, prototyping and research has been at the heart of everything we’ve done in the office and it’s wonderful to see so many interesting, innovative and exploratory ideas assembled here. Some of the technologies and techniques an architect or engineer can take away and use tomorrow in practice, others will stimulate our intellect and our desire to progress in months and years to come. It’s a very interesting cross section of a wide range of different ideas and approaches, so I think it is an extraordinarily interesting array of different components and materials. These have been sourced from the leading edge of world architecture, situated both in practice and in university research teams. Components in this exhibition will challenge perceived ideas about material science, others present the potential for the printing of metal components, Additive Manufacturing to transform construction.

Mike Stacey has been at the centre of arranging and putting on this exhibition, it started at Nottingham University where he is Professor. Mike worked with us back in the 80’s in particular on the HongKong Bank, Renault Centre and Stanstead Airport - so it’s very nice to renew our relationship once again with him. This quality of exhibition and the related conferences; TEST conference for teachers and researchers in Architecture, particularly Technology, Environmental Design & Sustainability [TEST] and the Prototyping Architecture International Conference helps to place The Building Centre at the heart of contemporary discourse on construction and architecture.

(Endnotes)

1 Spencer de Grey Head of Design at Foster + Partners and Chairman, The Building Centre Trust.
Introduction
Michael Stacey

‘Work stops at sunset. Darkness falls over the building site. The sky is filled with stars. “There is the blueprint,” they say.’

Italo Calvino, Invisible Cities

This book explores the importance of prototypes in the delivery of high quality contemporary architecture - performative architecture that is inventive, purposeful and beautiful. Focusing on construction that is informed by aspiration, knowledge and material culture. Written to accompany the Prototyping Architecture Exhibition in Nottingham, London and Cambridge, Ontario, 2012-13. Prototyping Architecture places a particular emphasis on research and experimentation showing how trial assemblies can inform architecture. In post-digital design practice the prototype remains a vital means of design development. Setting out impending systems and material futures, with the potential for technology transfer from other industries. It highlights the role of low carbon architecture and offsite manufacturing in maximising the effective use of materials and resources, whilst delivering environments that facilitate human well-being.

David Leatherbarrow in Uncommon Ground, 2000, mourns the death of design perhaps particularly in North America, charting the retreat of architectural practice, “the increased and increasing use of ready made solutions largely transforms design invention into choice, converting creativity into selection.” Thus diminishing the cultural value of architecture. Prototyping Architecture demonstrates that inventiveness has not been lost within architecture. Both architecture and technology are malleable in...
The hands of a well-informed architect, Prototyping Architecture illustrates the role of models, prototypes and the printed components in the design of architecture and the built environment, with a particular focus on architecture that is assembled from prefabricated components, where prototyping has particular relevance.

The making of architecture is dependent on ideas and the communication of ideas. If we examine the etymology of ‘prototype’ we find that it addresses the very core of architecture as generated by typologies.¹

1. An original thing or person of which or whom copies or improved forms, etc. are made.
2. A trial model or preliminary version of a vehicle, machine etc.
3. From the Greek – first, original

Whereas if we look at ‘innovation’ an overused word of contemporary life, we find the etymology to be:

1. bring in new methods, ideas, etc.
2. make changes.

From the Latin innovatus ‘altered’

Although the definition of innovation contains the notion of new ideas it is much more about transfer or borrowing. There is no need for the original and perhaps this is why governments find it easier to demand. In my view invention, to create by thought, is much more important.⁷

Primo Levi in his novel The Wench eloquently describes the creative impulse that resides within construction.

“We agreed then on the good things we have in common. On the advantage of being able to test yourself in your work, not depending on others in test, reflecting yourself in your work. On the pleasure of seeing your creature grow, beam after beam, bolt after bolt, solid, necessary, symmetrical, suited to its purpose and when it’s finished you look at it and you think that it will live longer than you, and perhaps it will be used to someone you don’t know, who does not know you. Maybe, as an old man, you’ll be able to come back and look at it, and it will be beautiful, and it doesn’t really matter so much that it will seem beautiful only to you, and you can say to yourself “maybe another man wouldn’t have brought it off”⁸

He captures the essence of the maker, of testing ones tectonic ideas. Is it the prototype or its author who is tested within the experiment? Does the testing of the prototype column demonstrate the iterative process that is inherent in architecture? The dendriform columns were outside the building regulations and structural testing of a prototype column was essential. Robert McCarter records, ‘as was typical of Wright’s structural innovations, professional engineers and inspectors not only did not understand these columns, they felt that they did not possess the necessary formulas necessary to calculate the indeterminate loads. They therefore opposed [the use of the Lilie columns] when Wright submitted the construction drawings to obtain a building permit in 1937 the Wisconsin State Building Commission was utilising a building code that could not be applied to Wright’s design. As a compromise Wright proposed casting and testing a single column.’⁹ On 4 June 1937 when the load test was carried with a test load of twelve current regulations and standards;

- test new holistic assemblies of many parts and components
- researching and generating robust constructional technology;
- test scale and to manifest ideas
- focus cross disciplinary collaboration;
- deliver quality.

The first three types of prototypes fully embrace an empirical scientific method and encompass the potential of failure, which is the failure of the prototype and is the basis of the success of the process. This is a process of prototyping and testing, a process of trial and error. However, within the realm of professional practice there is little scope for failure and it is the duty of ‘an experimental’ architect to return his or her work to the certain and risk free. Even within the experimental practice of Philip Beesley his work is constrained by the inhabitation of the gallery based installations. Although clearly metaphorical provocations of future action and future architecture, works of architecture that are comparable to the creation of literature, his installations including Protocol Mesh, remain constrained by many considerations including health & safety. However, all experimentation is now constrained by regulation respecting the health and welfare of the participants.

Examples of prototyping that were essential to realising the proposed architecture include the dendriform or tree-like concrete columns of The Great Workroom of the Johnson Wax Administration Building, completed in 1939 by Frank Lloyd Wright, and Tim Macfarlane’s work with Steve Jobs and Seele on the glass stairs and structural glass enclosures of the worldwide Apple stores. Although separated in time by over 60 years both are examples of architects and engineers working beyond the current norms of building regulations and constructional standards. The dendriform columns were outside the building regulations of Wisconsin in the 1930’s therefore the structural testing of a prototype column was essential. Robert McCarter records, ‘as was typical of Wright’s structural innovations, professional engineers and inspectors not only did not understand these columns, they felt that they did not possess the necessary formulas necessary to calculate the indeterminate loads. They therefore opposed [the use of the Lilie columns] when Wright submitted the construction drawings to obtain a building permit in 1937 the Wisconsin State Building Commission was utilising a building code that could not be applied to Wright’s design. As a compromise Wright proposed casting and testing a single column.’¹⁰ On 4 June 1937 when the cast concrete was only one week old, not fully cured, the load test was carried with a test load of twelve...
2.1 Protocell Mesh

Philip Beesley and Waterloo Architecture

Architect: Philip Beesley Architect Inc.

Researchers: University of Waterloo, School of Architecture

Materials: Bespoke aluminium hyperbolic grid-shell with aluminium and stainless steel details, glass and polymer filter assemblies, protocell chemical inclusions, essential oils.

Location: Wolfson Prototyping Hall, the University of Nottingham.

Exhibit: Protocell Mesh

Philip Beesley’s “work is a very humane response the contemporary condition of ecology. He seeks to progress beyond an abstract Modernism to something richer and more productive.”

The Protocell Mesh project integrates first-generation prototypes that include aluminium meshwork canopy scaffolding and a suspended protocell carbon-capture filter array. The scaffold that supports the Protocell Mesh installation is a resilient, self-bracing meshwork waffle. Curving and expanding, the mesh creates a flexible hyperbolic grid-shell. The meshwork is composed of flexible, lightweight chevron-shaped linking components. The chevrons interconnect to create a pleated diagonal grid surface. Bifurcations in mesh units create tapering and swelling forms that extend out from the diagrid membrane, reaching upward and downward to create suspension and mounting points. Floating radial compression frames provide local stiffening and gather forces for anchorage. Arrayed protocells are arranged within a suspended filter that lines this scaffold. The array acts as a diffuse filter that incrementally processes carbon dioxide from the occupied atmosphere and converts it into inert calcium carbonate. The process operates in much the same way that limestone is deposited by living marine environments. Within each
cell of the filter array, laser-cut Mylar valves draw humid air into a first chamber of concentrated sodium hydroxide. The solution enters a second chamber containing waterborne vesicles suspended between upper and lower oil layers. Chalk-like precipitate forming within these vesicles offers an incremental process of carbon fixing.

Surrounding the active flask arrays is a grotto-like accretion of suspended vials containing salts and sugar solutions that alternately accumulate and exude moisture, contributing to a diffusive, humid skin. Scent glands act as lures to encourage occupation of this synthetic aerial soil.

The Protocol Mesh project builds upon component systems that have been developed within the Hylozoic Series, a collaborative project that is pursuing near-living architectural systems combining lightweight flexible structures, interactive distributed computation and protocell metabolisms. The meshwork integrates research from the Universities of Waterloo, Nottingham, and Southern Denmark.

“This architecture is sitting on the frontier of new possibilities; some might say is this art or architecture? In a sense that is not what is important about this piece, it is really in the thoughts and provocations it produces, where its importance lies. It is more like literature than conventional architecture. It is how the imagination of the viewer is stimulated, where the cultural importance of the work of Philip Beesley lies.” Michael Stacey at Prototyping Architecture.3

Notes
image credits

Anup 1.32, 2.26.3
Anders Ingvartsen, 2.22.12
Harry Arrels, 1.44
Architectural Design, 2.22.7
Barkow Leibinger, 1.20, 1.21, 2.23.2-2.23.4
Amy Barkow, 2.23.1, 2.23.5
Philip Beasley, 1.1, 1.81, 1.82, 2.1.1 – 2.1.3
Bolltinger Grohmann Schneidere T GmbH, 2.4.13
Brooks Stacey Randall, 1.22, 1.23
Building Centre Trust, 2.11.3, 3.1.1
Cantifix, 1.54
Centre of Innovative Manufacturing in Additive Manufacturing, 1.75, 1.76, 3.2.1, 3.2.2
Michel Denancé, 2.26.1, 2.26.2, 2.26.4, 1.33, 1.34
Daniele Domenicali, 2.5.1, 2.5.2
Yves Ebnöther, 2.21.1 - 2.21.5
Seamus Garvey, 3.4.1 - 3.4.5
George Sharman Photography, 3.8.3 - 3.8.5
Gilbert, Dennis, 1.30, 2.11.1, 2.11.2, 2.11.4
John Gollings, 2.19.3 - 2.19.5, 2.19.7
Mark Goulthorpe / dECOi, 2.13.3 - 2.13.5
Anton Grassi, 2.13.1, 2.13.2, 2.13.6 - 2.13.8
Johannes Rauf Greisen, 2.6.1, 2.6.2
Jennifer Grewcock, 2.18.3, 2.18.4
Guillermo Guzman, 2.14.18, 2.14.43
F. Hafele, 2.4.9, 2.4.14, 2.4.17 - 2.4.20
Tim Mcfarlane, 1.5 – 1.7
Adam Mørk, 1.51
Music Bicycles, 1.80
NEX, 2.15.1 - 2.15.3, 2.16.2, 2.16.3
Soren Nielsen, 2.9.2, 2.9.5, 2.9.7
Office of National Statistics, 1.78
Frei Otto, 2.12.5
PBA Inc, 2.1.4
PERI, 2.7.2 - 2.7.6
Plumen, 1.53
GlossAir, 1.24
Rambo Computational Design, 1.41, 2.12.1, 2.12.3, 2.12.4, 2.12.6 - 2.12.10, 2.12.12
Paul Rangan, 2.25.1
Renz Piano Building Workshop, 1.31
Rogers Stirk Harbour + Partners, 1.14 – 1.16
Rolls-Royce, 1.52, 4.2.1 - 4.2.8
Sagrada Familia Archive, 2.18.2
Peter Sai Hung Man, 1.29, 1.58, 1.69, 2.9.1, 2.9.3, 2.9.4, 2.9.6, 2.10.2, 2.12.2, 2.12.11, 2.16.1, 2.20.5, 3.8.1, 3.8.2, 4.1.1, 4.1.4, 4.1.9
Scala, 1.2, 1.3
Scalan Projects / sixteen*(makers), 2.22.15 - 2.22.21
Frank J. Scharschel, 1.4
Jan Schipull Kauschen, 2.10.1, 2.10.3, 2.10.4
Schüco, 3.6.1, 3.6.2
Joel Segal, 3.1.2, 3.1.3
Matt Shaw, 2.22.8
Bob Sheil, 2.22.2, 2.22.14
SIAL @ RMIT, 2.18.1, 2.19.1, 2.19.2, 2.19.6
sixteen*(makers), 1.17 – 1.18, 2.22.1, 2.22.3 - 2.22.6, 2.22.22
soma, 1.8, 1.11 - 1.13, 2.4.1, 2.4.2, 2.4.4 - 2.4.8, 2.4.10 - 2.4.12, 2.4.15, 2.4.16
Martin Spencer, 1.49
Michael Stacey, 1.43, 1.45 - 1.46, 1.48, 1.65, 1.67, 1.68, 1.74, 1.83, 2.1.6, 2.2.1, 2.2.2, 2.2.6, 2.6.2, 2.14.16, 2.14.17, 2.14.19, 2.14.21, 2.14.23, 2.14.24, 2.14.29, 2.24.3, 2.24.6, 2.24.7, 3.5.1
Holger Strauss, 1.77, 3.3.1, 3.3.2
Suffolk County Council, 2.14.25
The Building Centre, 1.56, 2.1.5
Trimo, 3.7.1 - 3.7.5
Uffizi, Florence, 1.47
University of Nottingham, 2.14.15, 2.14.22
Peter Webb, 2.22.10
Hermann Gutmann Werke, 2.14.20
Elliot Wood, 1.71 – 1.73, 2.25.2 - 2.25.4
Kim Yong-Kwan, 2.4.3

Mario Cucinella Architects, 2.5.3, 2.5.4, 2.8.1 - 2.8.6
Emma Kate Matthews, 2.22.11
Tim Mcfarlane, 1.5 – 1.7
Adam Mark, 1.51
Music Bicycles, 1.80
NEX, 2.15.1 - 2.15.3, 2.16.2, 2.16.3
Soren Nielsen, 2.9.2, 2.9.5, 2.9.7
Office of National Statistics, 1.78
Frei Otto, 2.12.5
PBA Inc, 2.1.4
PERI, 2.7.2 - 2.7.6
Plumen, 1.53
GlossAir, 1.24
Rambo Computational Design, 1.41, 2.12.1, 2.12.3, 2.12.4, 2.12.6 - 2.12.10, 2.12.12
Paul Rangan, 2.25.1
Renz Piano Building Workshop, 1.31
Rogers Stirk Harbour + Partners, 1.14 – 1.16
Rolls-Royce, 1.52, 4.2.1 - 4.2.8
Sagrad...
References

Citation for the above:


For further reading:


