ACADIA 2013 ADAPTIVE ARCHITECTURE PROCEEDINGS

Library and Archives Canada Cataloguing in Publication
ACADIA (Conference) (33rd : 2013 : Cambridge, Ont.)

Conference held October 24-26, 2013 in Cambridge, Ontario and hosted by the School of Architecture, University of Waterloo with the University at Buffalo, SUNY and the University of Nottingham. This publication contains peer-reviewed and juried research on computational design focused on emerging themes of adaptive and complex systems within contemporary architecture.
Includes bibliographical references.
Issued in print and electronic formats.

© Copyright 2013
ACADIA and Riverside Architectural Press

The individual authors shown herein are solely responsible for their content appearing within this publication.

No part of this work covered by the copyright herein may be reproduced or used in any form or by any means – graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems – without the prior permission of the copyright owner. An electronic copy of the paper in .pdf format will be stored in the CUMINCAD database.
ACADIA 2013
ADAPTIVE ARCHITECTURE

PREFACE
Aron Temkin ACADIA President
Eric Haldenby University of Waterloo
Robert G Shibley University at Buffalo
Saffa Riffat University of Nottingham

INTRODUCTION
Philip Beesley University of Waterloo
Omar Khan University at Buffalo
Michael Stacey University of Nottingham

ACADIA 2013 AWARDS
5 2013 ACADIA AWARD OF TEACHING EXCELLENCE
 Greg Lynn
6 2013 ACADIA INNOVATIVE RESEARCH AWARD OF EXCELLENCE
 Elena Manferdini
7 2013 ACADIA INNOVATIVE ACADEMIC PROGRAM AWARD OF EXCELLENCE
 Brett Steele & Theodore Spyropoulos
11 2013 ACADIA SOCIETY AWARD OF EXCELLENCE
 Dr. Mahesh Das

TEX-FAB SKIN COMPETITION FINALISTS
15 CELLULAR COMPLEXITY
 Marie Bollensdorff, Kaio Al-Rawi, & Julia Koerner
 Architectural Association, London
17 2xM
 Christopher Romano & Nicholas Bruscia
 University at Buffalo, The State University of New York

19 ROBOTICALLY ASSISTED SHEET METAL SHAPING
 Nathan Shobe, Qi Su, & Nick Lik Han Gu
 Harvard University GSD

21 SENSE
 Isak Wørre Foged Aalborg University, Oslo School of Architecture
 Anke Posselt KEA

MATERIALS
25 RESPONSIVE EXPANSION
 Sixto Cordero Maisonet Massachusetts Institute of Technology
 Austin Smith Massachusetts Institute of Technology

33 HYGROSkin
 A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
 David Corea University of Stuttgart
 Oliver David Krieg University of Stuttgart
 Achim Menges University of Stuttgart
 Steffen Reichert University of Stuttgart
 Katja Rinderspacher University of Stuttgart

43 WORKING WITH MULTI-SCALE MATERIAL DISTRIBUTION
 Panagiotis Michalatos Harvard University
 Andrew D. Payne Harvard University

51 ADAPTIVE MORPHOLOGIES
 Toward a Morphogenesis of Material Construction
 Carolina Ramirez-Figueroa Newcastle University
 Martyn Duke-Robertson Newcastle University
 Luis Hernan Newcastle University

61 MATERIAL PARAMETERS AND DIGITALLY INFORMED FABRICATION OF TEXTURED METALS
 Nicholas Bruscia University at Buffalo, SUNY
 Christopher Romano University at Buffalo, SUNY
ENERGY

71 UNDERSTANDING HEAT TRANSFER PERFORMANCE FOR DESIGNING BETTER FAÇADES
Jane Burry RMIT University
Flora Salim RMIT University
Mani Williams RMIT University
Alex Pena de Lese RMIT University
Kamil Sharaidin RMIT University
Mark Burry RMIT University
Stig Anton Nielsen Chalmers University of Technology

79 DESIGNING IN PERFORMANCE
A Case Study of Applying Evolutionary Energy Performance Feedback for Design
Dr. David Jason Gerber USC School of Architecture
Shih-Hsin Eve Lin USC School of Architecture
Xinyue Amber Ma USC School of Architecture

87 VISUALIZATION OF BUILDING ENERGY PERFORMANCE IN BUILDING INFORMATION MODELS
Moo-Sung Jeong Texas A&M University
Jong Bum Kim Texas A&M University
Mark J. Clayton Texas A&M University
Jeff S. Haberi Texas A&M University
Wei Yan Texas A&M University

93 WIRING TO THE SKY
Kyle Konis University of Southern California

101 TOWARDS BIM-BASED PARAMETRIC BUILDING ENERGY PERFORMANCE OPTIMIZATION
Mohammad Rahmani Ast Texas A&M University
Saied Zarinfar Texas A&M University
Wei Yan Texas A&M University

109 ADAPTATION AS A FRAMEWORK FOR RECONSIDERING HIGH-PERFORMANCE RESIDENTIAL DESIGN
A Case Study
Geoffrey Thun Michigan Taubman College of Architecture and Urban Planning
Kathy Velikov Michigan Taubman College of Architecture and Urban Planning

INTERACTIVE

121 MORPHOLOGICAL BEHAVIOR OF SHAPE MEMORY POLYMERS TOWARD A DEPLOYABLE, ADAPTIVE ARCHITECTURE
Steven Beites University of Michigan

129 ALLOPLASTIC ARCHITECTURE
The Design of an Interactive Tensegrity Structure
Behnaz Farah Bouzouanji University of Southern California School of Architecture
Neil Leach University of Southern California School of Architecture
Alvin Huang University of Southern California School of Architecture
Michael Fox Cal Poly Pomona

137 RESINANCE
A (Smart) Material Ecology
Manuel Kretzer Computer Aided Architectural Design
Jessica In Heathenwick Studio
Joel Letkemann Computer Aided Architectural Design
Tomasz Jaskiewicz Delft University of Technology

147 ROBOT COWBOY
Revising Tundra Grassland through Robotic Herding
Ian Miller Robert Reich School of Landscape Architecture, Louisiana State University
Matt Rossbach Robert Reich School of Landscape Architecture, Louisiana State University

151 AUTONOMOUS AND ADAPTIVE CROSS-SCALAR STRUCTURES AND SYSTEMS
Maj Pietementas University College London

INFORMATION

161 PERFORMATIVE SURFACES
Generating Complex Geometries Using Planar Flow Patterns
Masoud Alikarshdeh Institute of Technology in Architecture, ITA / ETH

173 MANUFACTURING METHOD
A Study of The Stereotomic Methods of Guarino Guarini
Mark Ericson Woodbury School of Architecture

179 AN ADAPTIVE ARCHITECTURE FOR REFUGEE URBANISM
Sensing, Play, and Immigration Policy
Jordan Geiger University at Buffalo

183 HACKITECTURE
Open Source Ecology in Architecture
Akshay Goyal Architectural Association London

191 PROGRAMMING IN THE MODEL
A New Scripting Interface for Parametric CAD Systems
Maryam M. Maleki School of Interactive Arts and Technology, Simon Fraser University
Robert F. Woodbury School of Interactive Arts and Technology, Simon Fraser University

199 STIGMERGIC SPACE
AnnaLisa Meyboom University of British Columbia
Dave Reeves University of British Columbia
GAMESCAPES
Jose Sanchez Universidad de Chile, The Bartlett, UCL, London

D HOUR
A Bioclimatic Information Design Prototyping Toolkit
Kyle Steinfeld University of California, Berkeley
Brendon Levitt Losos + Ubbelohde

TECHNIQUES FOR MORE PRODUCTIVE GENETIC DESIGN
Exploration With GAs Using Non-Destructive Dynamic Populations
Peter von Buelow University of Michigan, Taubman College

ROBOTICS, MACHINING AND MECHANISMS

ADAPTABLE COMMUNICATION PROTOCOLS FOR ROBOTIC BUILDING SYSTEMS
Ubaldo Arenas Tecnológico de Monterrey
José Manuel Falcón Tecnológico de Monterrey

RESPONSIVE MATERIALITY FOR MORPHING ARCHITECTURAL SKINS
Chin Ioi Kho, Flora Salim RMIT University

POTENTIALS OF ROBOTIC FABRICATION IN WOOD CONSTRUCTION
Elastically Bent Timber Sheets with Robotically Fabricated Finger Joints
Oliver David Krieg University of Stuttgart
Achim Menges University of Stuttgart

BIOMOLECULAR, CHIRAL AND IRREGULAR SELF-ASSEMBLIES
Skyler Tibbits MIT Architecture
Ana Falvello Tomas MIT Architecture & Civil Engineering

BREAKING THE MOLD: VARIABLE VACUUM FORMING
Marc Swackhamer University of Minnesota
Blair Satterfield University of British Columbia

STRUCTURES

FRAMEWORKS FOR COMPUTATIONAL DESIGN OF TEXTILE MICRO-ARCHITECTURES AND MATERIAL BEHAVIOR IN FORMING COMPLEX FORCE-ACTIVE STRUCTURES
Sean Ahlquist University of Michigan, Taubman College
Achim Menges University of Stuttgart

BENDING-ACTIVE BUNDLED STRUCTURES
Preliminary Research and Taxonomy Towards an Ultra-Light Weight Architecture of Differentiated Components
Tom Bessai University of Michigan Taubman College

AGGREGATE ARCHITECTURE
Simulation Models for Synthetic Non-convex Granulates
Karola Dierichs University of Stuttgart
Achim Menges University of Stuttgart

THE NOVEL STONES OF VENICE
The Marching Cube Algorithm as a Strategy for Managing Mass-customisation
Iain Maxwell Architectural Association
David Pigram Columbia University
Wes McGee Georgia Institute of Technology

RESILIENT STRUCTURES THROUGH MACHINE LEARNING AND EVOLUTION
Ryan Mehanna Bartlett School of Graduate Studies, University College London

ADAPTIVE TECTONIC SYSTEMS
Parametric Modeling and Digital Fabrication of Precast Roofing Assemblies Toward Site-Specific Design Response
Felix Raspall Harvard Graduate School of Design
Matias Imbimbo Harvard Graduate School of Design
William Choi Harvard Graduate School of Design

FUNICULAR SHELL DESIGN EXPLORATION
Matthias Rippmann ETH Zurich
Philipppe Block ETH Zurich

myTHREAD PAVILION
Generative Fabrication in Knitting Processes
Jenny E. Sabin Cornell University

PERFORM/THE SCAN
Experimental Studies in 3D Scanning and Theatrical Performance
Bob Sheil The Bartlett School of Architecture, UCL

HIERARCHY IN KNITTED FORMS
Environmentally Responsive Textiles for Architecture
Jane Scott The University of Leeds

TOPOLOGY OPTIMIZATION AND DIGITAL ASSEMBLY OF ADVANCED SPACE-FRAME STRUCTURES
Asbjørn Søndergaard Aarhus School of Architecture
Oded Amir Israel Institute of Technology
Michael Knuss ETH Zürich

THE RISE
Material Behaviour in Generative Design
Martin Tamke Centre for Information Technology and Architecture (CITA)
David Stasiuk Centre for Information Technology and Architecture (CITA)
Mette Ramsgard Thomsen Centre for Information Technology and Architecture (CITA)
SPATIALIZING THE SOCIAL
Computational Strategies for Integrated Design in Informal Areas in Istanbul
Lila PanahiKazemi Dessau Institute of Architecture
Andrea Rossi Dessau Institute of Architecture

INVOLUTE
A Method for The Integration of Multi-Axis Fabrication with a Helical System of Variable Wood Bending
Bennett Vite Sceria University of Michigan
Susin Lin University of Michigan

TISSUE ARCHITECTURE
Programmable Folding in Digital Responsive Skins
Jae-Wen Shin Harvard University
Jenny E. Sabin Cornell University

OFF-ROAD CITY
Mike Silver Laboratory of Architecture and Applied Robotics, Ball State University

CONSTRUCTING MORPHGENETIC OPERATORS WITH INVERSIVE GEOMETRY
Wesley Smith University of California Santa Barbara
Pablo Colapinto University of California Santa Barbara

CAST THICKET
Ken Tracy American University of Sharjah
Christine Yogiaman American University of Sharjah

DYNAMIC TENSEGRITY SYSTEMS
A Case for Reconfigurable Structures in Urban Context
Dishita G. Turakhia EmTech, AA, London cubeALGO Design Studio

CURVED FOLDING: DESIGN TO FABRICATION
Sushant Verma Em.Tech. (AA London)
Gregory Epps The Royal Society of Arts

CNC SPONGE-FORMING AND PARAMETRIC SLIP CASTING
A Hybridization of Computation and Craft for Architectural Ceramics
Mark Weston University of South Florida
ACADIA 2013 Adaptive Architecture, the 33rd International Conference of the Association for Computer-Aided Design in Architecture, focuses on computational design of environmental, responsive, intelligent, interactive, and reconfigurable architecture. Organising this conference we perceive new intellectual territories opening, arising both from technology and from our nature inventiveness. In 2013, humankind benefits from millennia of cultural continuity while it faces profound challenges and opportunities. Fuelled by potent new research tools and techniques the discipline of architecture is ripe with potential. New modes of practice offer models where research, design and development are seen as one, and where knowledge passes with extraordinary fluidity, as if by osmosis, from practice to academia, from teacher to pupil and from the future architect to the architect-academic. The future is now.

Sir Peter Cook opened the first Adaptive Architecture Conference at the Building Centre, London, on 3 March 2011. He addressed Adaptive Architecture with a body of work that included the inspirational teaching of over three generations of future architects. We have yet to see Archigram’s visions fully realised, yet the pen-and-ink drawings by Cook and his collaborators present a future with such veracity that looking at them in a magazine or gallery one cannot help dreaming of a more flexible and adaptive future for architecture and humankind.

New roles for architectural environments are emerging that transform portions of static buildings into dynamic responsive surfaces by equipping them with new living intelligent distributed computation systems and chemically active functions. Adaptation of architecture can be as simple as the windows, blinds and sliding screens of Gerrit Rietveld’s Schroder House, 1924, where the first floor transforms from spaciousness to intimacy in the hands of its occupants, or it can be as sophisticated as biomimetic gill-like adaptive shading of Ocean One by the Austrian practice of Soma.[i] New design methods and new qualitative and performance-based paradigms are needed for working with complex systems within the built environment. Adaptive architecture is as much about process as well as product and outcome. We could recall Cedric Price’s prescient mantra from his 1976 Generator project: “never look empty, never feel full”. This observation speaks to adaptation in architecture in a poignant way, addressing its unstable, liminal nature. Price envisioned an adaptive architecture perceived within dynamic, ever-changing space. Equally important would be its emotional effects on the inhabitants which he suggests could be felt in the lack: never empty, never full.

Architecture has always been inventive and adaptable. Our current era, however, is unique in its technical potential and in the formidable challenges that societies and environments face today. The built environment is becoming responsive in terms of physical, real-time changes acting under intelligent controls. At the same time, the design of adaptive architecture might invoke a dilemma that arises between searching for materials and systems to be able to do so much more and perform so much better, while at the same time dwelling on substantial concerns about the potent implications of active, regenerative systems. What are the consequences of making adaptive architecture? How might we become responsible for this expansion of the power of architecture?

The papers included in ACADIA 2013 Adaptive Architecture provide a lens into the potential for architectural adaptation within our built environment. Recurring terms run throughout these papers, offering an emerging field of qualities: self-assembling, regular, performative, aggregate, genetic, stigmergic, generative, regenerative, morphogenetic, self-assembling, irregular, performative, aggregative, genetic, stigmergic, generative, regenerative, morphogenetic, parametric, evolutionary, resilient, learning, morphing, behavioural, active, aphatic, responsive, variable, rewiring, deployable, differentiable, open-ended. These qualities seem closely aligned with the attributes of living systems. Analogues drawn from life testify to inspiration for design, and they also imply aspirations to explicit performance, analysing and implementing tangible functions.

With the range of topics presented here, material intelligence appears as one consistent focus. Here emphasis on material properties and intelligent assemblies provides opportunities for designers to explore multiple scales and exploit new optimisations. Structures that are open to environmental and climatic influence to elicit change are one of many goals of this work. Another area of interest is in the adaptive nature of energy. Banham and Dalgetty’s Environment Bubble has burnt and energy no longer requires membranes to contain it. Like materials its instability is welcomed yet made more predictable through complex feedback systems and visualization. A more precise understanding of how energy works in buildings suggests a different model of energy performance that is no longer thermodynamic but thermomorphic and evolutionary.

ACADIA 2013 ADAPTIVE ARCHITECTURE
Alliopolitic Architecture
The Design of an Interactive Tensegrity Structure
Brian Fein Diwaraj, Nal Lach, and Abhijit Fox
5 Tom, Syra 2006, and Accurate Position Control of Shape Memory Alloys, Palermo.

Scalar Structures and Systems
A (Smart) Material Ecology
Resinance
3 ——. Point grid pre-transformation based on the spatial curves.
3 ——. a. T op, middle, and bottom part of the graph; and b. .
3 ——. a. Point grid; and b. input Flow pattern on the point grid.
3 ——. a. Point grid; and b. input Flow pattern on the point grid.
3 ——. Surface transformation algorithm.
3 ——. Surface transformation algorithm II.
3 ——. Surface transformation algorithm.
3 ——. Physical model of the process.
3 ——. Step by step process of activation of cells.
3 ——. Surface transformation algorithm (II).
3 ——. a. Algorithm (b) in algorithm.
3 ——. a. Point grid, and; input flow pattern on the point grid.
3 ——. flock point, and; input flow pattern on the point grid.
3 ——. Each cell is set to flow eight primary directions of the flow to minimize unfavorable direction vice versa.
3 ——. a. the area covered by downward only; b. covered by both; and c. covered by either.
3 ——. a. Rationalized connected network; and b. shortest distance stream from each point.
3 ——. Step finder algorithm, a. upward direction; b. .
3 ——. stress measurements of supersetting; and; surface network graph.
3 ——. Physical model of the rationalized network based on flow direction.
3 ——. Physical model of the discrete flow pattern for another surface geometry.
3 ——. a. Area of influence; b. input point; c. distance from point grid; d. distance from height; e. transformed point.
3 ——. Different quantity of x creates different steps for the surfaces.
3 ——. Spatial point generation; a. positive; b. curve; c. and b. branches and polymers conditions; d. branches sequences.
3 ——. Break in the geometry results for direct translation plan and height changed by spatial curve.
3 ——. Superimposition of linear height change and re-arranged point grid due to spatial curve.
3 ——. Design Sample using only plan drawings of curves.
3 ——. Design Sample using only plan drawings of curves.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Superimposition of linear height change.
3 ——. Use of non-linear transformation in generating surface geometry.
3 ——. Linear transformation in generating from surfaces.
3 ——. ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Use of non-linear transformation in generating from surfaces.
3 ——. Linear transformation in generating from surfaces.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Use of non-linear transformation in generating surface geometry.
3 ——. Linear transformation in generating from surfaces.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
3 ——. Use of non-linear transformation in generating surface geometry.
3 ——. Linear transformation in generating from surfaces.

Adaptive Architecture for Refugee Urbanism
Sanxing, Play, and Immigration Policy
Tenue
1 United States Department of Homeland Security, public domain image. TIC ‘scarcity scores at international airports.
3 2012-2015
4 Hackitecture
1 Nagpore, Thlo, 1970. Seek project.

Programming in the Model
A new scripting interface for parametric CAD systems
Mayen Kalic, Robert Woodbury
1 ——. Timelines next construction; process.
2 ——. Nest nodes become pheromone sources to create templates representing external influences.
3 ——. a. Slope and contour lines; b. ridge and coarse lines; c. .
4 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
5 ——. f. Nodes become pheromone sources.
6 ——. f. Nodes become pheromone sources.
7 ——. f. Nodes become pheromone sources.
8 ——. f. Nodes become pheromone sources.
9 ——. f. Nodes become pheromone sources.
10 ——. f. Nodes become pheromone sources.

Stigmatic Space
Sanxing, Play, and Immigration Policy
Anna Kiyoko Miyazaki
1 Miyazaki, Anna. Reviews, Dave. 2013. Tents next construction; process.
2 ——. Nest nodes become pheromone sources to create templates representing external influences.
3 ——. a. the area covered by downward only; b. covered by both; and c. covered by either.
4 ——. a. the area covered by downward only; b. covered by both; and c. covered by either.
5 ——. a. the area covered by downward only; b. covered by both; and c. covered by either.
6 ——. Yellow shade of the simulation.
7 ——. Yellow shade of the simulation.
8 ——. Yellow shade of the simulation.
9 ——. Yellow shade of the simulation.
10 ——. Yellow shade of the simulation.

Gamascece
Jose Sanchez
1 Blake, Bob. 2008. Screenshot from Fold It, protein folding videogame.
2 Pintor, Emma. 2009. Screenshot from Fractals, voxel base pertevision videogame.
3 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
4 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
5 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
6 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
7 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
8 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
9 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
10 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.

GameScapes
Jose Sanchez
1 Blake, Bob. 2008. Screenshot from Fold It, protein folding videogame.
2 Pintor, Emma. 2009. Screenshot from Fractals, voxel base pertevision videogame.
3 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
4 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
5 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
6 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
7 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
8 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
9 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.
10 ——. Algorithm in process where two distinct families of agents negotiate spatial territories.

ROBOTS, MACHINING AND MECHANISMS
Adaptable Communication Protocols
for Robotic Building Systems
Udaya Balakrishna, Jose Manuel Palacios Menor
1 ——. Timelines next construction; process.
2 ——. Nest nodes become pheromone sources.
3 ——. Nest nodes become pheromone sources.
4 ——. Nest nodes become pheromone sources.
5 ——. Nest nodes become pheromone sources.
6 ——. Nest nodes become pheromone sources.
7 ——. Nest nodes become pheromone sources.
8 ——. Nest nodes become pheromone sources.
9 ——. Nest nodes become pheromone sources.
10 ——. Nest nodes become pheromone sources.

Responsive Materiality for Morphing Architectural Skins
Ophelia Okhuysen, Kyle Steinfeld, Brendon Levitt
3 ——. ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
4 ——. ——. Graphical abstraction of the binary strain on a two-dimensional matrix.
Enabling generative fabrication and design of spatial performance

myThread Pavilion

Potentials of Robotic Fabrication in Wood Construction

52

myThread: Fabrication and the Pliability of Form

11-6

Jenny Sabin

11-5

11-4

11-3

11-2

11-1

myThread Pavilion

Phasellus felis lacus, tempus ac consequat a, vestibulum et neque. Aenean ornare ultrices risus, at vestibulum libero pretium non. Duis vulputate interdum ante, pretium suscipit nisl ultricies et. Vivamus quam dui, convallis vel tristique sit amet, accumsan eget nibh.
Citation